Rogelj, Joeri, et al. “Credibility Gap in Net-Zero Climate Targets Leaves World at High Risk.” Science, vol. 380, no. 6649, June 2023, pp. 1014–16. DOI.org (Crossref), doi.org/10.1126/science.adg6248
Note: Inclusive of fossil fuel use and industrial activity, land use, land-use change, and forestry. Source: Friedlingstein, Pierre, et al. “Global Carbon Budget 2022.” Earth System Science Data, vol. 14, no. 11, Nov. 2022, pp. 4811–900. Copernicus Online Journals, doi.org/10.5194/essd-14-4811-2022
Note: For reference, a megatonne is equal to one million metric tonnes
Global Warming of 1.5 oC. ipcc.ch/sr15. Accessed 30 June 2023
Note: Mitigation deterrence describes the potential risk of society not prioritizing emissions reduction and instead opting for CDR to compensate for emissions that should otherwise be eliminated directly. It is important that CDR is not used as an excuse to continue emitting GHGs that could be eliminated in a cost-effective manner
Note: Currently there is no scientific consensus on what should qualify as a ‘residual emission’ and assigning such a definition may involve value judgments
Smith, S. M., Geden, O., Nemet, G., Gidden, M., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G., Pratama, Y., Repke, T., Riahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela, J. M., and Minx, J. C. (2023). The State of Carbon Dioxide Removal – 1st Edition. The State of Carbon Dioxide Removal. doi:10.17605/OSF.IO/W3B4Z
Note: Overshoot describes a period of time when the global average surface temperature of the planet exceeds 1.5°C or 2°C above pre-industrial levels as established in the Paris Agreement. In the event of warming that exceeds these temperature thresholds, CDR provides the potential to reduce global average surface temperatures back below these thresholds through sustained net-negative emissions
Note: There is still some overlap and interdependencies between these different sets of technologies for applications such as DAC and BECCS
Smith, S. M., Geden, O., Nemet, G., Gidden, M., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G., Pratama, Y., Repke, T., Riahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela, J. M., and Minx, J. C. (2023). The State of Carbon Dioxide Removal – 1st Edition. The State of Carbon Dioxide Removal. doi:10.17605/OSF.IO/W3B4Z
Powis, Carter M., et al. “Quantifying Global Carbon Dioxide Removal Deployment.” Environmental Research Letters, vol. 18, no. 2, Jan. 2023, p. 024022. Institute of Physics, doi.org/10.1088/1748-9326/acb450.
Note: This report defines durable CDR as operating on timescales ranging from centuries to millennia through storage mediums that are less vulnerable to physical reversal events.
Smith, S. M., Geden, O., Nemet, G., Gidden, M., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G., Pratama, Y., Repke, T., Riahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela, J. M., and Minx, J. C. (2023). The State of Carbon Dioxide Removal – 1st Edition. The State of Carbon Dioxide Removal. doi:10.17605/OSF.IO/W3B4Z CARBON REMOVAL CANADA Section 5: Appendi x 40
Smith, S. M., Geden, O., Nemet, G., Gidden, M., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G., Pratama, Y., Repke, T., Riahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela, J. M., and Minx, J. C. (2023). The State of Carbon Dioxide Removal – 1st Edition. The State of Carbon Dioxide Removal. doi:10.17605/OSF.IO/W3B4Z
Note: Additional opportunities for CDR (which are not covered in this report) could include the full elimination of national historical emissions and/or pursuing a CDR-as-a-service model where CDR is undertaken in one country on behalf of another country that does not have access to adequate resources and therefore acts as a ‘host country’ for such projects.
Note: This figure excludes emissions from the land use, land-use change and forestry or LULUCF sector.
Note: CO₂ equivalent (CO₂e) refers to bundling the global warming potential of different types and amounts of greenhouse gasses into a single, common metric that equates to the amount of CO₂ molecules that would have a similar warming effect.
Buck, H.J., Carton, W., Lund, J.F. et al. Why residual emissions matter right now. Nat. Clim. Chang. 13, 351–358 (2023). doi.org/10.1038/s41558-022-01592-2
Note: This would be roughly equivalent to taking 28 – 109 million passenger vehicles off the road per year from an emissions standpoint. Source: Government of Canada, Natural Resources Canada. Greenhouse Gas Equivalencies Calculator. 13 June 2017, oee.nrcan.gc.ca/corporate/statistics/neud/dpa/calculator/ghg-calculator.cfm.
Note: This may be especially true given that some models may only optimize on cost rather than a suite of variables that would affect deployment prospects for CDR such as land use requirements and clean energy availability.
Note: This is particularly important given the inherent uncertainty associated with the performance of the LULUCF sector operating as a net sink or source of CO₂ in any given year (particularly with worsening climate impacts to natural systems in the future).
IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647
Note: Net zero is a precondition for net-negative. Any CDR deployment from the present through the achievement of net-zero emissions therefore would not contribute to the removal of historical emissions given that it would simply be compensating for ongoing emissions into the atmosphere.
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2022, Earth Syst. Sci. Data, 14, 4811–4900, doi.org/10.5194/essd-14-4811-2022, 2022
Friedlingstein et al., 2022b
Hansis, E., Davis, S. J., and Pongratz, J.: Relevance of methodological choices for accounting of land use change carbon fluxes, Global Biogeochemical Cycles, 29, 1230-1246, 2015.
Note: More specifically, the emissions breakdown includes 34 GtCO₂ from fossil fuel use and 39 GtCO₂ from land-use change.
Note: These figures exclude non-CO₂ greenhouse gases.
Note: Higher levels of certainty beyond >50 per cent would be desirable for both 1.5°C scenarios but such data were not available for this analysis.
Smith, S. M., Geden, O., Nemet, G., Gidden, M., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G., Pratama, Y., Repke, T., Riahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela, J. M., and Minx, J. C. (2023). The State of Carbon Dioxide Removal – 1st Edition. The State of Carbon Dioxide Removal. doi:10.17605/OSF.IO/W3B4Z CARBON REMOVAL CANADA Section 5: Appendix 41
IPCC, 2022: Annex III: Scenarios and modelling methods [Guivarch, C., E. Kriegler, J. Portugal-Pereira, V. Bosetti, J. Edmonds, M. Fischedick, P. Havlík, P. Jaramillo, V. Krey, F. Lecocq, A. Lucena, M. Meinshausen, S. Mirasgedis, B. O’Neill, G.P. Peters, J. Rogelj, S. Rose, Y. Saheb, G. Strbac, A. Hammer Strømman, D.P. van Vuuren, N. Zhou (eds)]. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.022
An Advance Market Commitment to Accelerate Carbon Removal. frontierclimate.com. Accessed 20 Aug. 2023.
The analysis was conducted by Navius Research using their gTech model to investigate the jobs and economic opportunities that could result from scaling up CDR technologies in Canada.
The model assumed that DAC costs were relatively high in 2050 (a minimum of $217 per tonne) and overall adoption was low (high availability of new nuclear power plants, low future biofuel costs, low global oil prices, and low population growth in Canada). DAC was used in the model as a proxy for any type of CDR. Results should not be interpreted as Carbon Removal Canada assuming that all CDR will rely on DAC.
“Charm Industrial.” A Story of American Ingenuity and Progress, charmindustrial.com/newjobs. Accessed 14 Sept. 2023.
Government of Canada, Public Services and Procurement Canada. National Inventory Report : Greenhouse Gas Sources and Sinks in Canada.: En81-4E-PDF – Government of Canada Publications – Canada.Ca. 1 July 2002, publications.gc.ca/site/eng/9.506002/publication.
Note: This estimate is based on the CO₂ emissions level of 537 MtCO₂ in 2021.
Kearns, J., Teletzke, G., Palmer, J., Thomann, H., Kheshgi, H., Chen, H., Paltsev, S., & Herzog, H. (2017). Developing a consistent database for regional geologic CO₂ storage capacity worldwide, MIT Joint Program on the Science and Policy of Global Change, globalchange.mit.edu/sites/default/files/MITJPSPGC_Reprint_17-18.pdf. Accessed 10 Oct. 2023.
Pillorge, H., Kolosz, B., Wu, G.C., & Freeman, J. (2021). “Global Mapping of CDR Opportunities.” CDR Primer, edited by J Wilcox, B Kolosz, J Freeman. cdrprimer.org/read/chapter-3. Accessed 21 Aug. 2023.
Note: CDR through CO₂ utilization can only be achieved if the source of the CO₂ is from the atmosphere or biogenic feedstocks and the entire end-to-end process (i.e., full project life cycle) results in net-negative emissions.
“Home.” Planetary Technologies, https://www.planetarytech.com/. Accessed 2 Aug. 2023.
“Carbon Engineering | Direct Air Capture of CO₂ | Home.” Carbon Engineering, carbonengineering.com. Accessed 2 Aug. 2023.
Government of Canada, Department of Finance. Chapter 3: A Made-In-Canada Plan: Affordable Energy, Good Jobs, and a Growing Clean Economy | Budget 2023. 28 Mar. 2023, budget.canada.ca/2023/report-rapport/chap3-en.
“Future Unbuilt: Transforming Canada’s Regulatory Systems to Achieve Environmental, Economic, and Indigenous Partnership Goals.” Business Council of Alberta. June 2023.
Pending research and “Achieving net-zero pathways for Canada : Interim paper 1” (2023) Clean Prosperity Net-Zero Research Programme. Accessed 31 Aug. 2023 cleanprosperity.ca/wp-content/uploads/2023/06/Achieving-net-zero-pathways- June-2023-Clean-Prosperity.pdf. Select pathways for 2050 include Bioenergy ~13 Mt;Renewables ~19 Mt; Hydrogen ~33 Mt; Electrification ~70 Mt using basic reference parameters (sensitivities).
Government of Canada, Environment and Climate Change Canada – Exploring Approaches for Canada’s Transition to Net-Zero Emissions Canada’s Long-Term Strategy Submission to the United Nations Framework Convention on Climate Change. unfccc.int/sites/default/files/resource/LTS%20Full%20Draft_Final%20version_oct31.pdf. Accessed 23 Aug. 2023.
Electric Power Research Institute, 2021. Canadian National Electrification Assessment: Electrification Opportunities for Canada’s Energy Future. epri.com/research/programs/109396/results/3002021160. Accessed 23 Aug. 2023.
Smith, S. M., Geden, O., Nemet, G., Gidden, M., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G., Pratama, Y., Repke, T., Riahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela, J. M., and Minx, J. C. (2023). The State of Carbon Dioxide Removal – 1st Edition. The State of Carbon Dioxide Removal. doi:10.17605/OSF.IO/W3B4Z
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2022, Earth Syst. Sci. Data, 14, 4811–4900, doi.org/10.5194/essd-14-4811-2022, 2022.